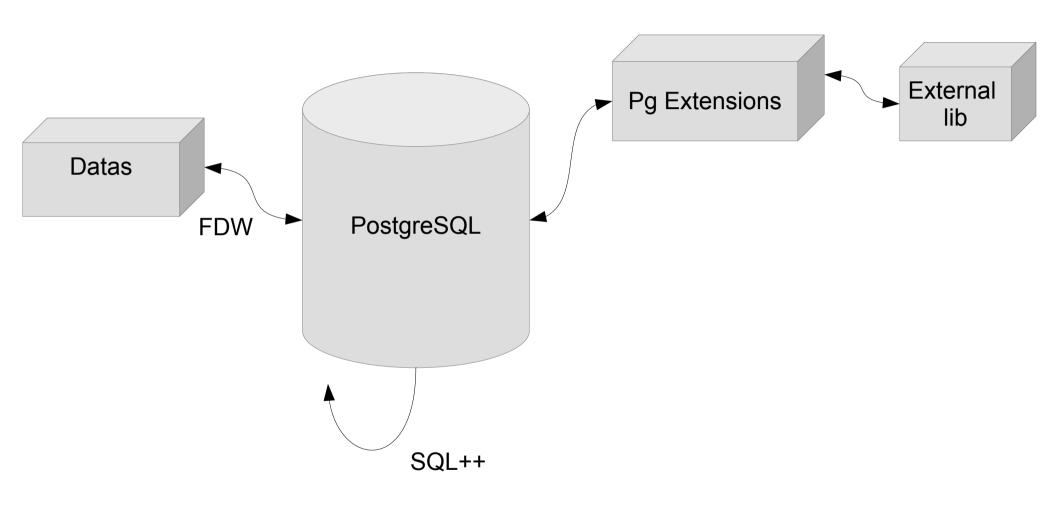
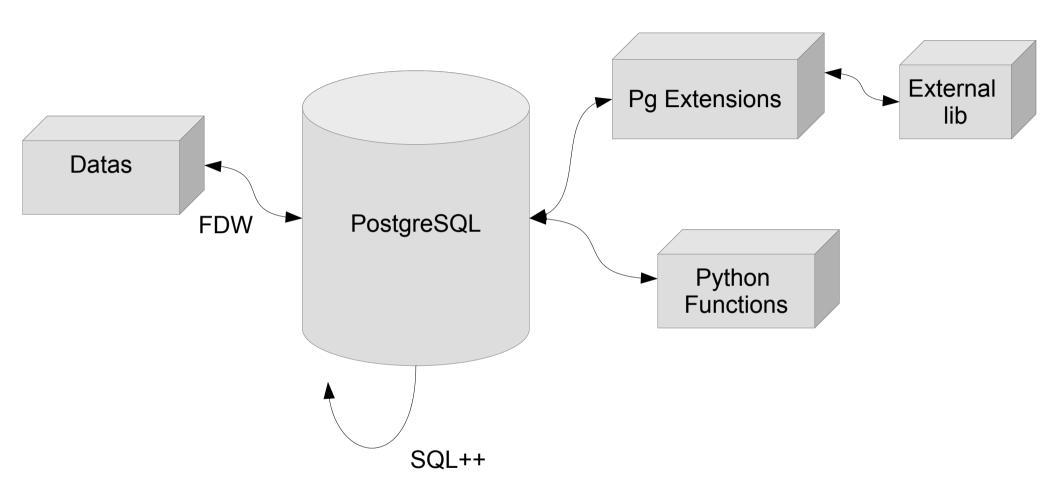
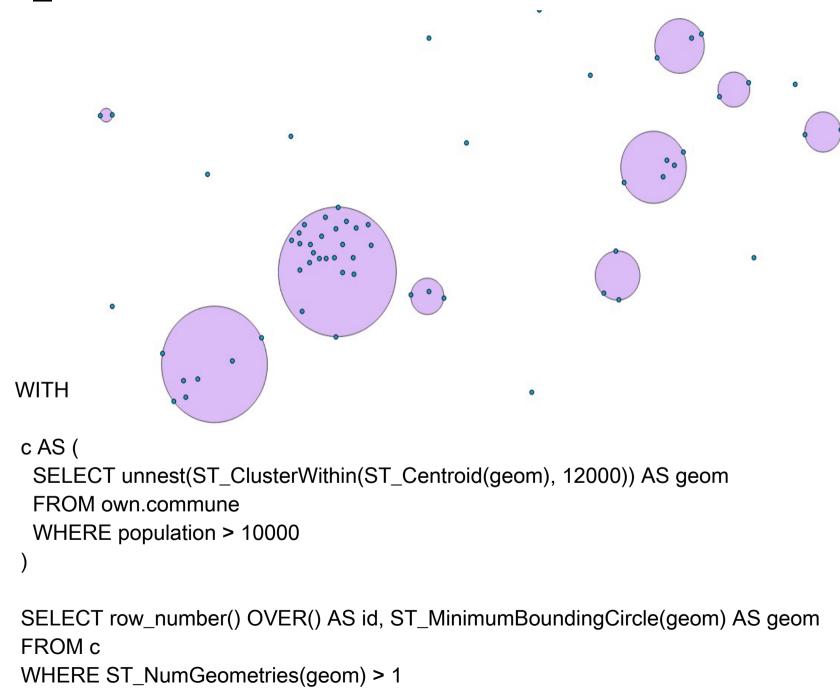
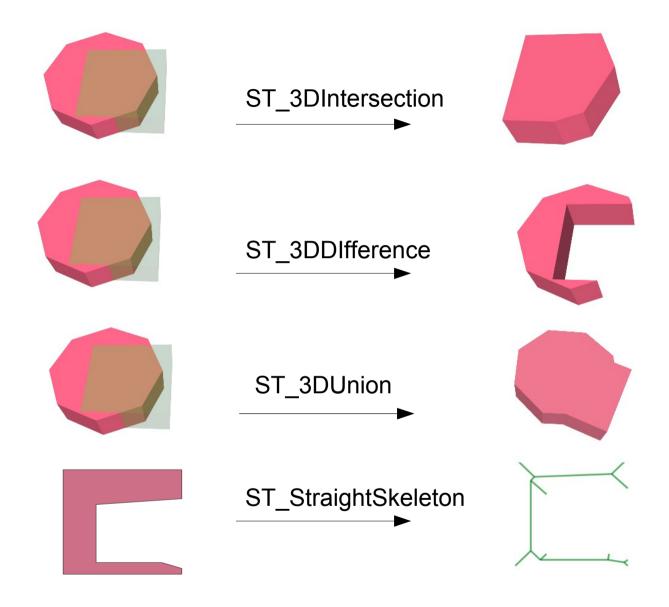

PostGIS Advanced Analysis


PGSession #8 - Lyon


PostgreSQL is not a database But a framework...



PostGIS 2.3


http://download.osgeo.org/postgis/source/postgis-2.3.0rc1.tar.gz

```
ST Voronoi
WITH c AS (
SELECT ST_Centroid((ST_Dump(geom)).geom) AS geom
FROM own.commune
WHERE population > 10000
), v AS (
SELECT ST_Intersection (
   (ST_Dump(ST_CollectionHomogenize(ST_Voronoi(ST_Collect(geom))))).geom,
        (SELECT ST_Union(geom) FROM own.commune)
    ) AS geom
FROM c
SELECT geom, row_number() OVER() AS id FROM v
```

ST_ClusterWithin

SFCGAL Extension

SFCGAL_CHECK_VALIDITY

"Everything is related to everything else, but near things are more related than distant things."

W. Tobler

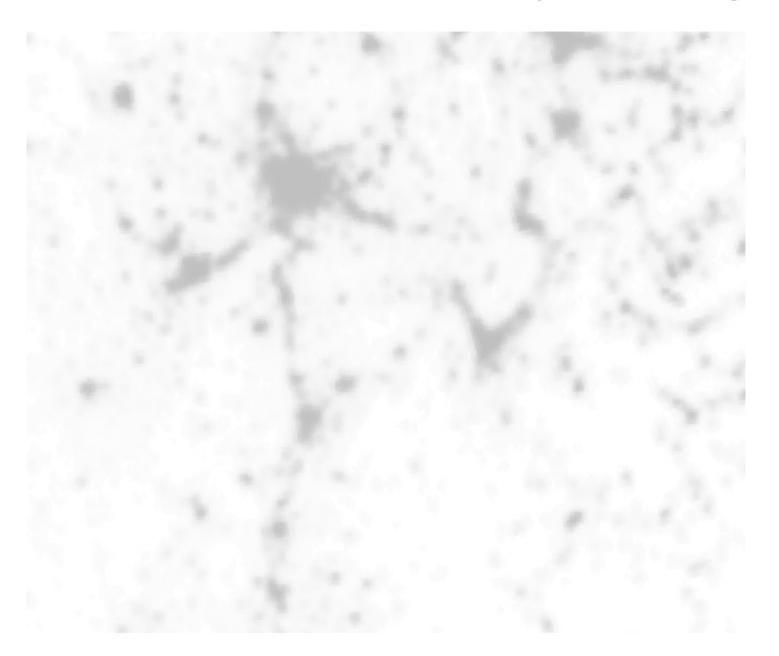
```
CREATE EXTENSION fuzzystrmatch;
```

```
SELECT levenshtein ('same', 'same'); - - and not different
```

```
SELECT levenshtein ('gdal', 'pdal');

1
```

SELECT levenshtein ('postgis', 'oracle spatial');
12

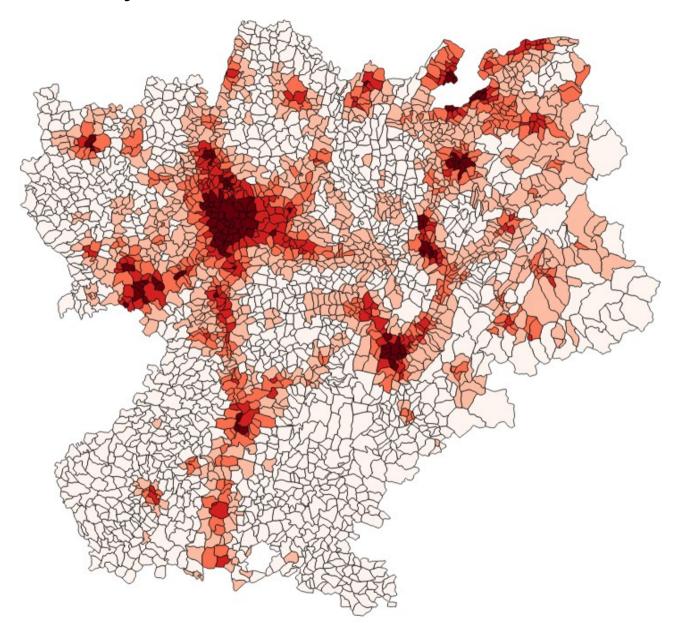

ST_HausdorffDistance

```
WITH a AS (
 SELECT id, ST_Simplify(geom, 5000) AS geom
 FROM own.commune
SELECT a.id, b.id,
ST_HausdorffDistance(a.geom, b.geom) AS dh
FROM a, own.commune b
WHERE nom_com = 'Lyon'
ORDER BY dh ASC
LIMIT 5;
 id | id |
            dh
1347 | 1347 | 185.139093997864
1072 | 1347 | 6681.60493070321
2461 | 1347 | 6817.89817025694
2824 | 1347 | 7149.21791806655
```

344 | 1347 | 7929.70883765602

But, could we get a bit deeper in our (spatial) analysis?

Light Pollution @Night


Open Data from : http://geodata.grid.unep.ch - 2003 Raster

Raster (light pollution) / Vector (area) Intersection

```
WITH In AS
  SELECT id, avg(px) AS light
  FROM
     SELECT id, ST_Value(rast, ST_SetSrid((ST_Dumppoints(pts)).geom, 2154)) AS px
     FROM (
             SELECT id, geom AS pts FROM own.commune
           ) ASt, r
     WHERE ST_Intersects(rast, pts)
  ) AS tt
  GROUP BY id
```

UPDATE own.commune c SET light = In.light_pollution FROM In WHERE c.id = In.id

Light pollution by area

Road density by area

```
ALTER TABLE own.commune ADD COLUMN road_density_2016 numeric;

WITH rd AS (

SELECT c.id,

(SUM(ST_Length( ST_Intersection(c.geom, r.geom))) / ST_Area(c.geom)) AS road_density FROM own.commune c, osm.roads_2016 r

WHERE ST_Intersects(c.geom, r.geom)

GROUP BY c.id
```

UPDATE own.commune c SET road_density_2016 = rd.road_density FROM rd WHERE c.id = rd.id

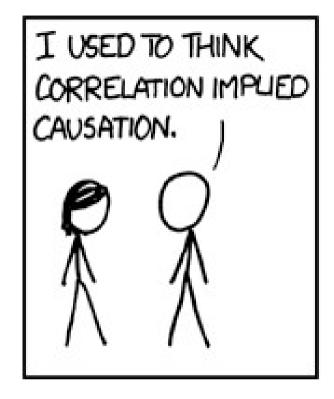
Table 9-50. Aggregate Functions for Statistics

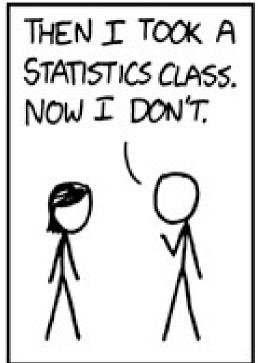
Function	Argument Type	Return Type	Description	
corr(Y, X)	double precision	double precision	correlation coefficient	
covar_pop(Y, X)	double precision	double precision	population covariance	
covar_samp(Y, X)	double precision	double precision	sample covariance	
regr_avgx(Y, X)	double precision	double precision	average of the independent variable $(sum(X)/N)$	
regr_avgy(Y, X)	double precision	double precision	average of the dependent variable $(sum(Y)/N)$	
regr_count(Y, X)	double precision	bigint	number of input rows in which both expressions are nonnull	
regr_intercept(Y, X)	double precision	double precision	y-intercept of the least-squares-fit linear equation determined by the $(x,\ Y)$ pairs	
regr_r2(Y, X)	double precision	double precision	square of the correlation coefficient	
regr_slope(Y, X)	double precision	double precision	slope of the least-squares-fit linear equation determined by the (x, y) pairs	
regr_sxx(Y, X)	double precision	double precision	$sum(X^2) - sum(X)^2/N$ ("sum of squares" of the independent variable)	
regr_sxy(Y, X)	double precision	double precision	sum(X*Y) - sum(X) * sum(Y)/N ("sum of products" of independent times dependent variable)	
regr_syy(Y, X)	double precision	double precision	$sum(Y^2) = sum(Y)^2/N$ ("sum of squares" of the dependent variable)	
stddev(expression)	smallint, int, bigint, real, double precision, or numeric	double precision for floating-point arguments, otherwise numeric	historical alias for stddev_samp	
stddev_pop(expression)	smallint, int, bigint, real, double precision, or numeric	double precision for floating-point arguments, otherwise numeric	population standard deviation of the input values	
stddev_samp(<i>expression</i>)	smallint, int, bigint, real, double precision, or numeric	double precision for floating-point arguments, otherwise numeric	sample standard deviation of the input values	
variance(expression)	smallint, int, bigint, real, double precision, or numeric	double precision for floating-point arguments, otherwise numeric	historical alias for var_samp	
var_pop(expression)	smallint, int, bigint, real, double precision, or numeric	double precision for floating-point arguments, otherwise numeric	population variance of the input values (square of the population standard deviation)	
var_samp(expression)	smallint, int, bigint, real, double precision, or numeric	double precision for floating-point arguments, otherwise numeric	sample variance of the input values (square of the sample standard deviation)	

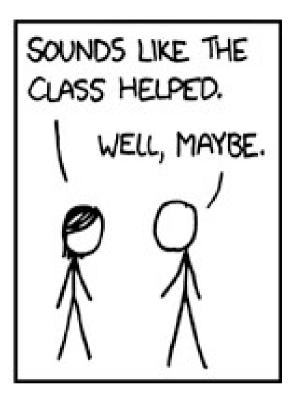
SELECT corr (pop_density, light)::numeric(4,4) FROM own.commune;

0.6533

-- OSM 08/2014


SELECT corr (road_density, light)::numeric(4,4) FROM own.commune;


0.7573


-- OSM 08/2016

SELECT corr (road_density, light)::numeric(4,4) FROM own.commune;

0.7782

"Everything is related to everything else, but near things are more related than distant things."

W. Tobler

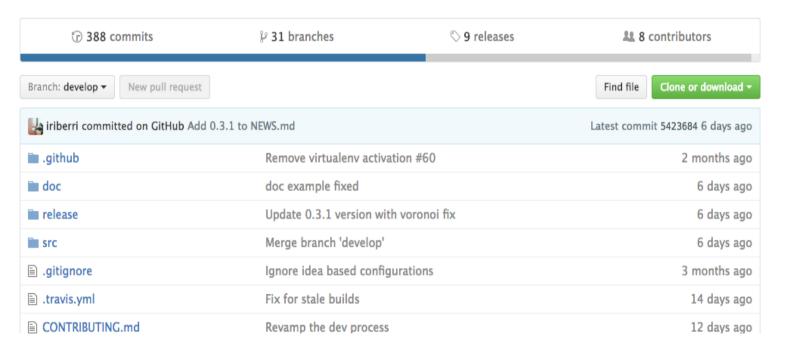
Moran I - Spatial Autocorrelation Coefficient

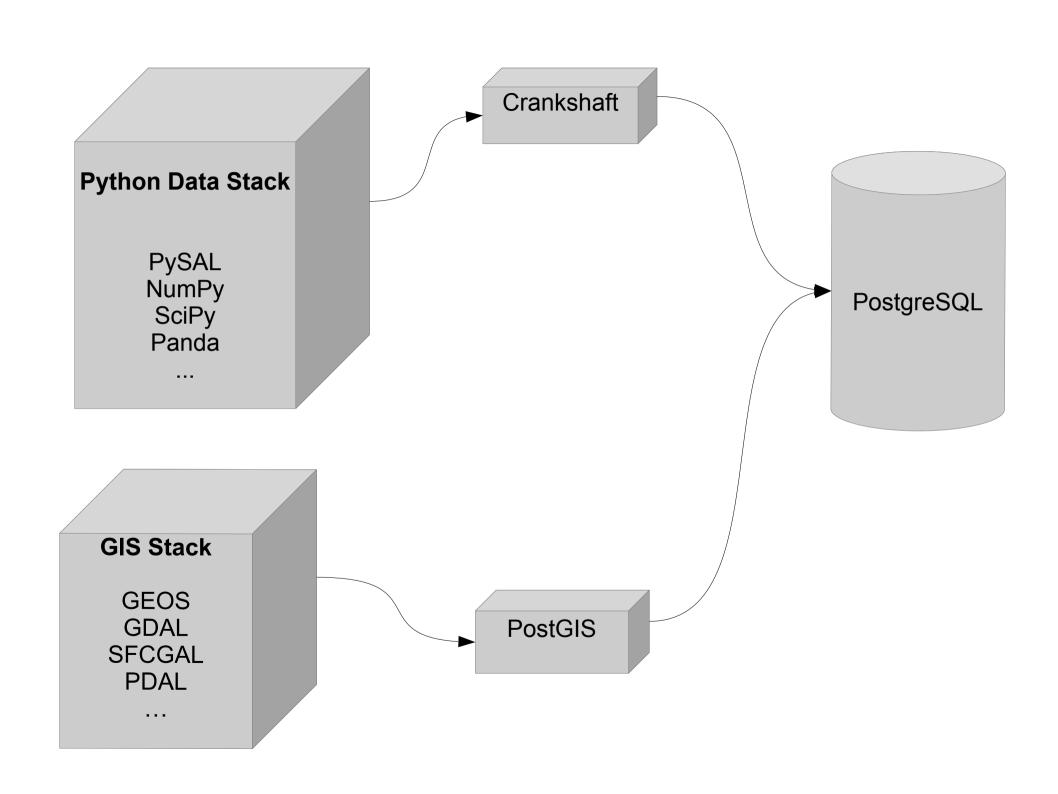
- 1 → Strong Spatial Correlation
- $0 \rightarrow Random$
- -1 → Perfectly dispersed

$$I = rac{N}{\sum_{i} \sum_{j} w_{ij}} rac{\sum_{i} \sum_{j} w_{ij} (X_{i} - \bar{X})(X_{j} - \bar{X})}{\sum_{i} (X_{i} - \bar{X})^{2}}$$

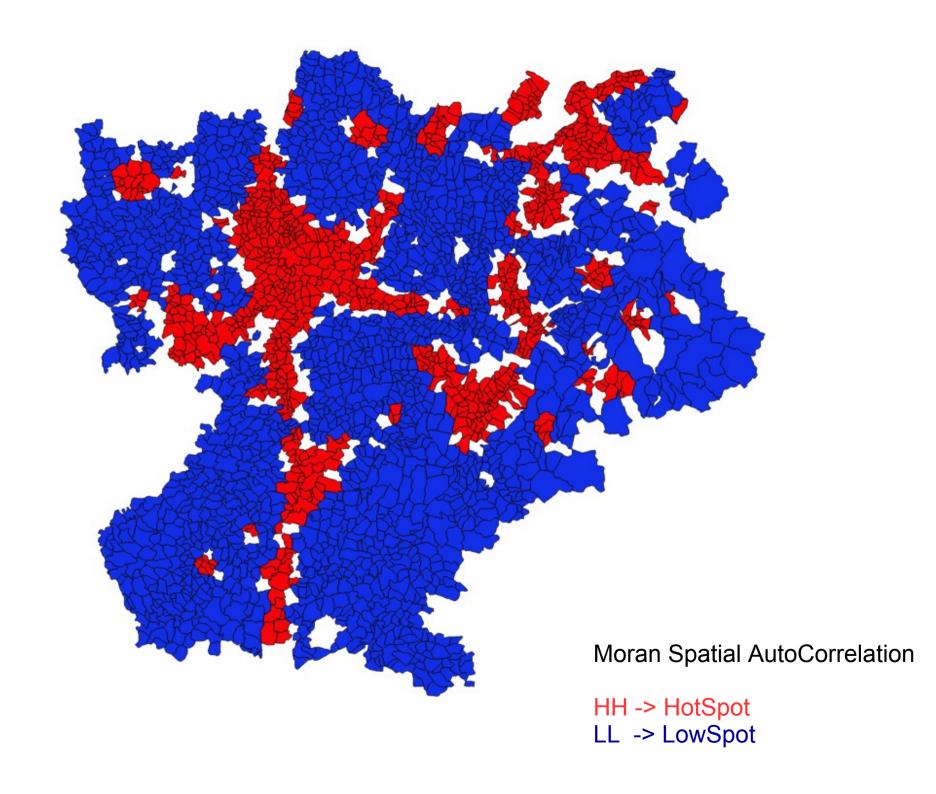
Humm, do we really need R?

http://pysal.github.io/grid.html


PySAL: Python Spatial Analysis Library


This page collects links to examples using pysal. Click on each figure to see access the full example with code included.

CARTO Spatial Analysis extension for PostgreSQL




```
SELECT moran::numeric(10, 4)
FROM cdb_crankshaft.cdb_areasofinterestGlobal(
     'SELECT * FROM own.commune', -- data table
     'light', -- column name to check
     'knn', -- weight : queen or knn
     5, -- k value (for knn)
     99, 'geom', 'id'
```

queen 0.8235 knn5 0.8201 knn20 0.6687 knn50 0.5220

```
WITH m AS (
 SELECT aoi.*, c.id, c.nom_com, c.geom
 FROM cdb_crankshaft.cdb_areasofinterestlocal(
             'SELECT * FROM own.commune',
             'light',
             'knn',
             5,
             99,
             'geom',
             'id') As aoi
 JOIN own.commune As c
 ON c.id = aoi.rowid
SELECT quads, geom, ow_number() OVER() AS id
FROM u
WHERE quads = 'HH' OR quads = 'LL'
```


SELECT current_date;

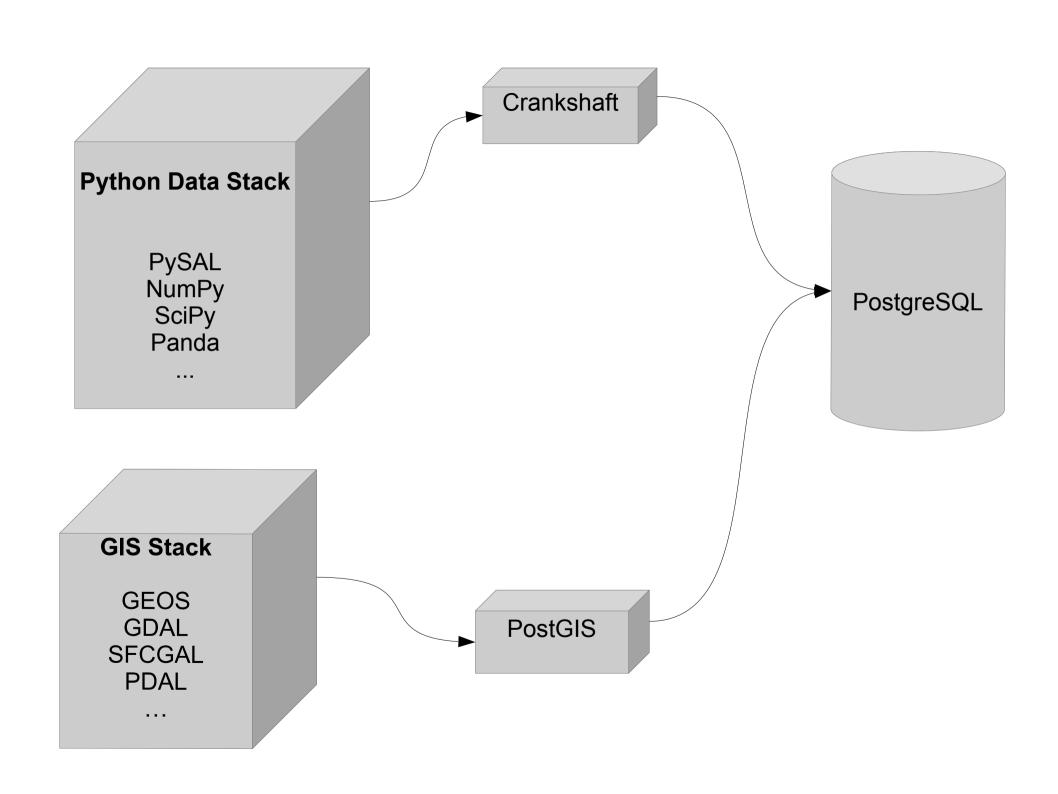
2016-09-22

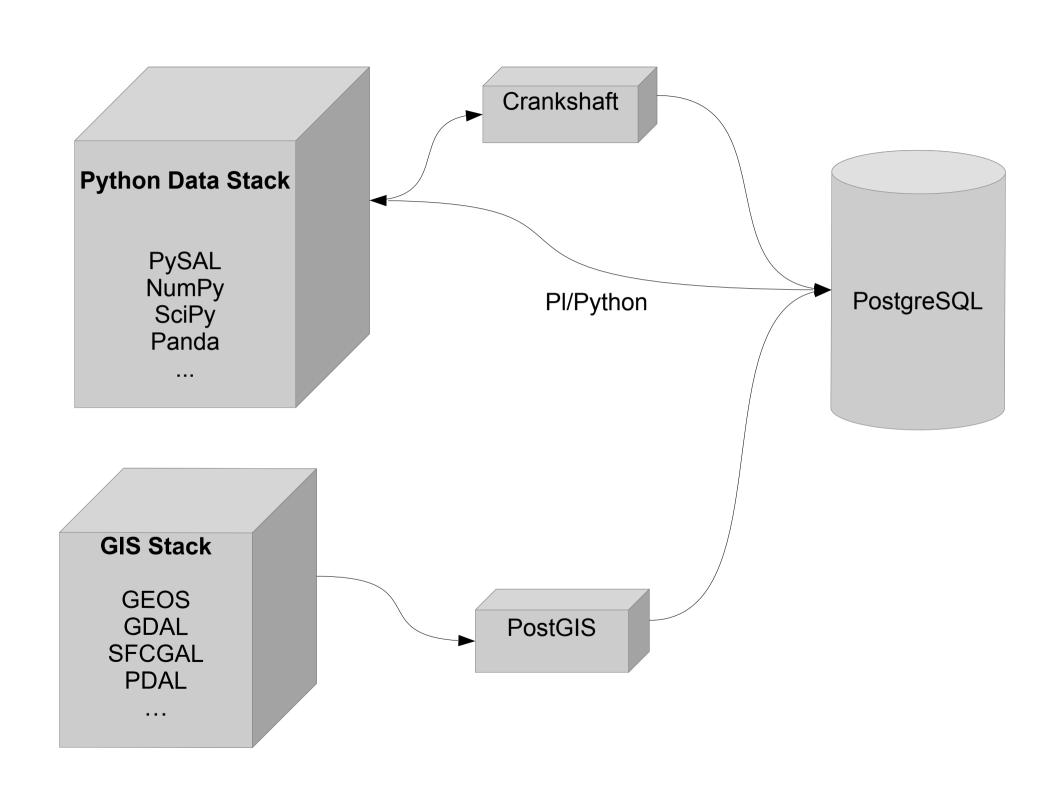
http://data.grandlyon.com/

HISTORIQUE DES DISPONIBILITÉS DES STATIONS VÉLO'V

La donnée historique des disponibilités des stations Vélo'V propose un historique sur les 7 derniers jours au pas de 5 minutes. Cette donnée dispose :

- >
- Des services WMS, WFS, KML, SHP standards (idem stations Vélov)
- Du service SOS pour les requêtes temporelles sur la disponibilité des vélos et des bornettes
- Du graphe SOS sur la disponibilité des vélos et des bornettes sur les
 7 derniers jours
- De la visionneuse temporelle WMS-T au pas de 5 minutes.
- En savoir plus


```
WITH a AS (
  SELECT*,
      bikes::numeric / (bikes + stands)::numeric AS avl,
      extract(hour FROM timestamp) h
  FROM gl.velov
  WHERE extract(isodow FROM timestamp) BETWEEN 1 AND 5
   AND (bikes + stands) != 0
SELECT 'Monday to Friday' AS days, count(*) FROM a
UNION
SELECT 'Monday to Sunday' AS days, count(*) FROM gl.velov
```


days	count	
Monday to Friday Monday to Sunday	•	

```
WITH a AS (
  SELECT *, bikes::numeric / (bikes + stands)::numeric AS avl, extract(hour FROM timestamp) h
  FROM al.velov
  WHERE extract(isodow FROM timestamp) BETWEEN 1 AND 5 AND (bikes + stands) != 0
 ), b AS ( SELECT station id, h, avg(avl) AS avl FROM a GROUP BY id, h)
 , c1 AS (SELECT id, h, avl FROM b WHERE id = 2012)
 , c2 AS (SELECT id, h, avl FROM b WHERE id = 3001)
 , c3 AS ( SELECT id, h, avl FROM b WHERE id = 1002)
 , c4 AS (SELECT id, h, avl FROM b WHERE id = 2035)
SELECT c1.h.
         c1.avl::numeric(10,3) AS Bellecour,
         c2.avl::numeric(10, 3) AS PartDieu,
         c3.avl::numeric(10, 3) AS Opera,
         c4.avl::numeric(10, 3) AS Republique
FROM c1, c2, c3, c4
WHERE c1.h = c2.h \text{ AND } c2.h = c3.h \text{ AND } c3.h = c4.h
```

ORDER BY h

h bellecour partdieu opera republique							
0	0.775	0.042		0.361			
1	0.744	0.065	0.285	0.307			
2	0.731	0.062	0.158	0.223			
3	0.725	0.068	0.136	0.235			
4	0.732	0.107	0.123	0.201			
5	0.747	0.238	0.100	0.177			
6	0.749	0.651	0.158	0.157			
7	0.545	0.847	0.143	0.176			
8	0.256	0.786	0.126	0.315			
9	0.306	0.815	0.286	0.692			
10	0.424	0.876	0.356	0.843			
11	0.510	0.839	0.322	0.835			
12	0.635	0.801	0.371	0.840			
13	0.737	0.793	0.398	0.902			
14	0.598	0.858	0.470	0.886			
15	0.611	0.861	0.531	0.816			
16	0.712	0.882	0.555	0.777			
17	0.586	0.854	0.692	0.790			
18	0.671	0.519	0.768	0.627			
19	0.744	0.161	0.829	0.418			
20	0.790	0.042	0.856	0.516			
21	0.840	0.042	0.913	0.690			
22	0.796	0.049	0.792	0.656			
23	0.794	0.066	0.568	0.551			

Scipy.org

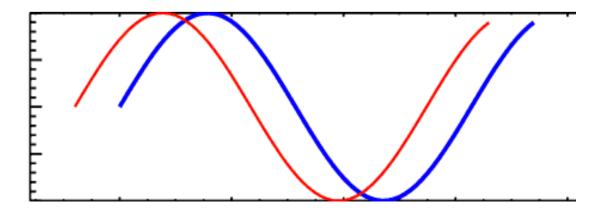
Docs

SciPy v0.18.1 Reference Guide

Signal processing (scipy.signal)

Convolution

convolve(in1, in2[, mode]) Convolve two N-dimensional arrays.


correlate(in1, in2[, mode]) Cross-correlate two N-dimensional arrays.

fftconvolve(in1, in2[, mode]) Convolve two N-dimensional arrays using FFT.

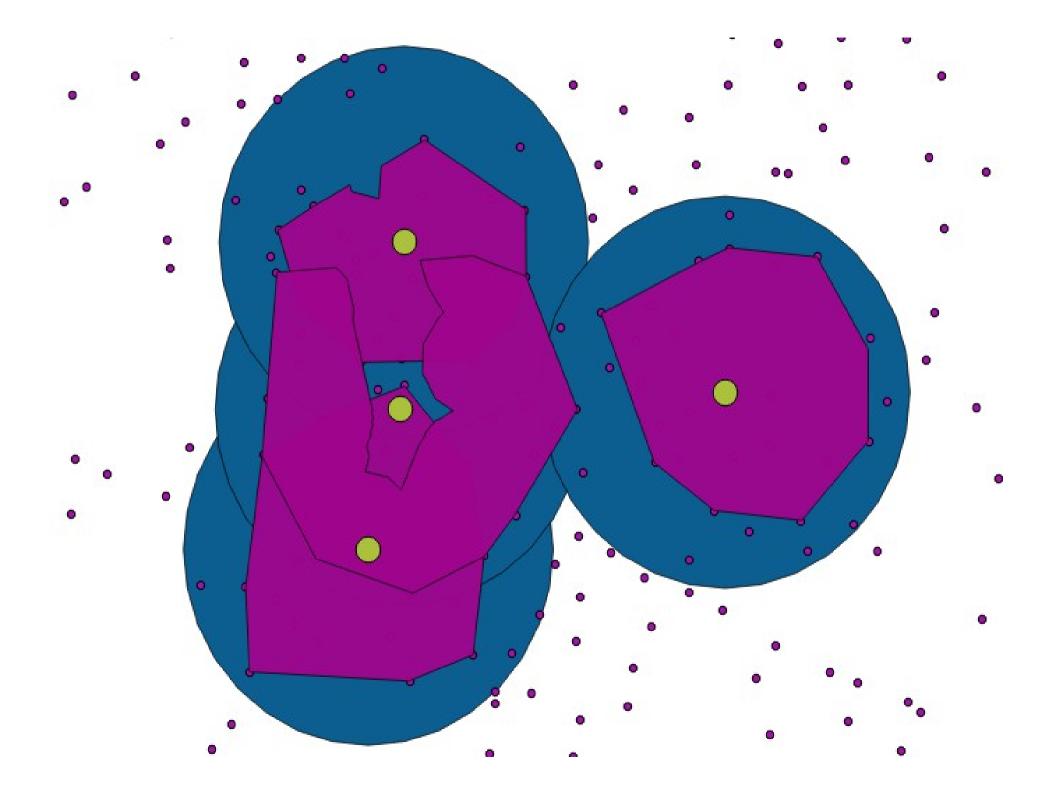
convolve2d(in1, in2[, mode, boundary, fillvalue]) Convolve two 2-dimensional arrays.

correlate2d(in1, in2[, mode, boundary, ...]) Cross-correlate two 2-dimensional arrays.

sepfir2d((input, hrow, hcol) -> output)
Description:

CREATE OR REPLACE FUNCTION signal_correlate(a float[], b float[]) RETURNS numeric AS \$\$

from scipy import signal import numpy as np


return np.argmax(signal.correlate(a, b)) - len(a)

\$\$ LANGUAGE plpythonu;

```
WITH
 a AS (
  SELECT *, bikes::numeric / (bikes + stands)::numeric AS avl, extract(hour FROM timestamp) h
  FROM gl.velov
  WHERE extract(isodow FROM timestamp) BETWEEN 1 AND 5 AND (bikes + stands) != 0
 , b AS ( SELECT station id, h, avg(avl) AS avl FROM a GROUP BY id, h)
 , c1 AS ( SELECT id, h, avl FROM b WHERE id = 2012 ORDER BY h) -- Bellecour
 , c2 AS ( SELECT id, h, avl FROM b WHERE id = 3001 ORDER BY h) -- PartDieu
 , c3 AS ( SELECT id, h, avl FROM b WHERE id = 1002 ORDER BY h) -- Opera
 , c4 AS (SELECT id, h, avl FROM b WHERE id = 2035 ORDER BY h) -- Republique
SELECT signal_correlate(array_agg(c1.avl), array_agg(c2.avl)) AS partdieu,
         signal_correlate(array_agg(c1.avl), array_agg(c3.avl)) AS opera,
         signal correlate(array agg(c1.avl), array agg(c4.avl)) AS republique
FROM c1, c2, c3, c4
WHERE c1.h = c2.h \text{ AND } c1.h = c3.h \text{ AND } c1.h = c4.h
```

```
WITH t AS (SELECT *, bikes::numeric / (bikes + stands)::numeric AS avl,
                    extract(hour FROM timestamp) h
           FROM gl.velov
           WHERE extract(isodow FROM timestamp) BETWEEN 1 AND 5
              AND (bikes + stands) != 0),
  a AS (SELECT station id, h, avg(avl) AS avl FROM t GROUP BY id, h),
  h AS ( SELECT id, array_agg(avl) avl, array_agg(h) h FROM a GROUP BY id ),
  s AS (SELECT id, ST Transform(geom, 2154) AS geom FROM gl. station),
  d AS (SELECT s1.id s1, lat.id s2, lat.d d FROM s AS s1,
      LATERAL (SELECT s2.id, ST Distance(s1.geom, s2.geom) as d
            FROM s AS s2
            WHERE NOT s1.id > s2.id AND NOT ST Equals(s1.geom, s2.geom)
            ORDER BY s1.geom <-> s2.geom LIMIT 25) AS lat
      WHERE lat.d < 1000 ).
  c AS (SELECT s1, s2, d, signal_correlate(h1.avl, h2.avl) s
      FROM h h1, h h2, d WHERE d.s1 = h1.id AND d.s2 = h2.id ORDER BY s1, s2),
  g AS (SELECT s1 id,array_agg(s2) AS ids FROM c WHERE s IN (-1, 0, 1) GROUP BY s1),
  z AS (SELECT g.id, ST ConcaveHull(ST Collect(geom), 0.6), row number() OVER() i
      FROM g, s WHERE s.id = ANY (g.ids) GROUP BY g.id)
```

SELECT * FROM z WHERE id = 2012 OR id = 3001 OR id = 1002 OR id = 2035

Skills to fully play with

SQL++

(Open) Data

PostGIS ToolBox Statistical skills

PG Extension

Python

#Conclusion

PostgreSQL behaves like an extensible and integrated Framework

(modern) SQL and Python acting as glue languages

Possible Bridge beetween GIS and Python DataScience communities

Thanks

http://www.oslandia.com

https://github.com/Oslandia/presentations

http://oslandia.com/pages/jobs.html

Meetup Lyon DataScience EPITECH 19h00 86 Boulevard Marius Vivier Merle

RMLL 2017 : du 1er au 7 juillet,

@Saint-Étienne https://alolise.org/